Implementations
Traces Definitions
LLM Foundation Models
-
gen_ai.system- The vendor of the LLM (e.g. OpenAI, Anthropic, etc.) -
gen_ai.request.model- The model requested (e.g.gpt-4,claude, etc.) -
gen_ai.response.model- The model actually used (e.g.gpt-4-0613, etc.) -
gen_ai.request.max_tokens- The maximum number of response tokens requested -
gen_ai.request.temperature -
gen_ai.request.top_p -
gen_ai.prompt- An array of prompts as sent to the LLM model -
gen_ai.completion- An array of completions returned from the LLM model -
gen_ai.usage.prompt_tokens- The number of tokens used for the prompt in the request -
gen_ai.usage.completion_tokens- The number of tokens used for the completion response -
gen_ai.usage.total_tokens- The total number of tokens used -
gen_ai.usage.reasoning_tokens(OpenAI) - The total number of reasoning tokens used as a part ofcompletion_tokens -
gen_ai.request.reasoning_effort(OpenAI) - Reasoning effort mentioned in the request (e.g.minimal,low,medium, orhigh) -
gen_ai.request.reasoning_summary(OpenAI) - Level of reasoning summary mentioned in the request (e.g.auto,concise, ordetailed) -
gen_ai.response.reasoning_effort(OpenAI) - Actual reasoning effort used -
llm.request.type- The type of request (e.g.completion,chat, etc.) -
llm.usage.total_tokens- The total number of tokens used -
llm.request.functions- An array of function definitions provided to the model in the request -
llm.frequency_penalty -
llm.presence_penalty -
llm.chat.stop_sequences -
llm.user- The user ID sent with the request -
llm.headers- The headers used for the request
Vector DBs
db.system- The vendor of the Vector DB (e.g. Chroma, Pinecone, etc.)db.vector.query.top_k- The top k used for the query- For each vector in the query, an event named
db.query.embeddingsis fired with this attribute:db.query.embeddings.vector- The vector used in the query
- For each vector in the response, an event named
db.query.resultis fired for each vector in the response with the following attributes:db.query.result.id- The ID of the vectordb.query.result.score- The score of the vector in relation to the querydb.query.result.distance- The distance of the vector from the query vectordb.query.result.metadata- Related metadata that was attached to the result vector in the DBdb.query.result.vector- The vector returneddb.query.result.document- The document that is represented by the vector
Pinecone-specific
pinecone.query.idpinecone.query.namespacepinecone.query.top_kpinecone.usage.read_units- The number of read units used (as reported by Pinecone)pinecone.usage.write_units- The number of write units used (as reported by Pinecone)
LLM Frameworks
traceloop.span.kind- One ofworkflow,task,agent,tool.traceloop.workflow.name- The name of the parent workflow/chain associated with this spantraceloop.entity.name- Framework-related name for the entity (for example, in Langchain, this will be the name of the specific class that defined the chain / subchain).traceloop.association.properties- Context on the request (relevant User ID, Chat ID, etc.)

